R/dependency_type_lifecycle.R
dependency_type_lifecycle.Rd
Computes the dependencies based on the approach taking into account activity durations based on life-cycle transitions.
dependency_type_lifecycle(
threshold_dependency = 0.9,
threshold_l1 = threshold_dependency,
threshold_frequency = 0,
all_connected = FALSE,
endpoints_connected = FALSE
)
A dependency threshold, usually in the interval [0,1]
, filtering out dependencies below the threshold.
A dependency threshold, usually in the interval [0,1]
, filtering out self-loop dependencies below the threshold.
An absolute frequency threshold filtering dependencies which are observed infrequently.
If TRUE
the best antecedent and consequent (as determined by the dependency measure) are going to be added regardless of the threshold
value.
If TRUE
the start/end activity is added as antecedent/consequent when an activity would not be connected according to the threshold
value.
A dependency type.
A. Burattin and A. Sperduti, “Heuristics Miner for Time Intervals,” in ESANN 2010, 18th European Symposium on Artificial Neural Networks, Bruges, Belgium, April 28-30, 2010, Proceedings, 2010.
dependency_matrix(L_heur_1,
dependency_type = dependency_type_fhm(all_connected = TRUE))
#> consequent
#> antecedent End Start a b c d e
#> End 0.0000000 0 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
#> Start 0.0000000 0 0.9756098 0.0000000 0.0000000 0.0000000 0.0000000
#> a 0.0000000 0 0.0000000 0.9166667 0.9166667 0.9285714 0.0000000
#> b 0.0000000 0 0.0000000 0.0000000 0.0000000 0.0000000 0.9166667
#> c 0.0000000 0 0.0000000 0.0000000 0.0000000 0.0000000 0.9166667
#> d 0.0000000 0 0.0000000 0.0000000 0.0000000 0.0000000 0.9285714
#> e 0.9756098 0 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
#> attr(,"class")
#> [1] "dependency_matrix" "matrix" "array"