Calculates evaluation measures for a Petri nets and an Event Log

evaluation_all(
  eventlog,
  petrinet,
  initial_marking,
  final_marking,
  parameters = default_parameters(eventlog),
  convert = TRUE
)

evaluation_precision(
  eventlog,
  petrinet,
  initial_marking,
  final_marking,
  parameters = default_parameters(eventlog),
  variant = variant_precision_etconformance(),
  convert = TRUE
)

variant_precision_etconformance()

evaluation_fitness(
  eventlog,
  petrinet,
  initial_marking,
  final_marking,
  parameters = default_parameters(eventlog),
  variant = variant_fitness_token_based(),
  convert = TRUE
)

variant_fitness_token_based()

variant_fitness_alignment_based()

Arguments

eventlog

A bupaR or PM4PY event log.

petrinet

A bupaR or PM4PY Petri net.

initial_marking

A R vector with the place identifiers of the initial marking or a PM4PY marking. By default the initial marking of the bupaR Petri net will be used if available.

final_marking

A R vector with the place identifiers of the final marking or a PM4PY marking.

parameters

PM4PY alignment parameter. By default the activity_key from the bupaR event log is specified using param_activity_key.

convert

TRUE to automatically convert Python objects to their R equivalent. If you pass FALSE you can do manual conversion using the r-py-conversion function.

variant

The evaluation variant to be used.

Value

A list with all available evaluation measures.

Examples

if (pm4py_available()) { library(eventdataR) data(patients) # As Inductive Miner of PM4PY is not life-cycle aware, keep only `complete` events: patients_completes <- patients[patients$registration_type == "complete", ] # Discover a Petri net net <- discovery_inductive(patients_completes) # Calculate evaluation measures for event log and Petri net evaluation_all(patients_completes, net$petrinet, net$initial_marking, net$final_marking) }
#> $fitness #> $fitness$perc_fit_traces #> [1] 100 #> #> $fitness$average_trace_fitness #> [1] 0.9983214 #> #> $fitness$log_fitness #> [1] 0.9989947 #> #> #> $precision #> [1] 0.6538696 #> #> $generalization #> [1] 0.9439686 #> #> $simplicity #> [1] 0.8181818 #> #> $metricsAverageWeight #> [1] 0.8537537 #> #> $fscore #> [1] 0.7904004 #>