R/evaluation.R
evaluation.Rd
Calculates evaluation measures for a Petri nets and an Event Log
evaluation_all( eventlog, petrinet, initial_marking, final_marking, parameters = default_parameters(eventlog), convert = TRUE ) evaluation_precision( eventlog, petrinet, initial_marking, final_marking, parameters = default_parameters(eventlog), variant = variant_precision_etconformance(), convert = TRUE ) variant_precision_etconformance() evaluation_fitness( eventlog, petrinet, initial_marking, final_marking, parameters = default_parameters(eventlog), variant = variant_fitness_token_based(), convert = TRUE ) variant_fitness_token_based() variant_fitness_alignment_based()
eventlog | A bupaR or PM4PY event log. |
---|---|
petrinet | A bupaR or PM4PY Petri net. |
initial_marking | A R vector with the place identifiers of the initial marking or a PM4PY marking. By default the initial marking of the bupaR Petri net will be used if available. |
final_marking | A R vector with the place identifiers of the final marking or a PM4PY marking. |
parameters | PM4PY alignment parameter.
By default the |
convert |
|
variant | The evaluation variant to be used. |
A list
with all available evaluation measures.
if (pm4py_available()) { library(eventdataR) data(patients) # As Inductive Miner of PM4PY is not life-cycle aware, keep only `complete` events: patients_completes <- patients[patients$registration_type == "complete", ] # Discover a Petri net net <- discovery_inductive(patients_completes) # Calculate evaluation measures for event log and Petri net evaluation_all(patients_completes, net$petrinet, net$initial_marking, net$final_marking) }#> $fitness #> $fitness$perc_fit_traces #> [1] 100 #> #> $fitness$average_trace_fitness #> [1] 0.9983214 #> #> $fitness$log_fitness #> [1] 0.9989947 #> #> #> $precision #> [1] 0.6538696 #> #> $generalization #> [1] 0.9439686 #> #> $simplicity #> [1] 0.8181818 #> #> $metricsAverageWeight #> [1] 0.8537537 #> #> $fscore #> [1] 0.7904004 #>